Click amount to donate direct to CounterPunch
  • $25
  • $50
  • $100
  • $500
  • $other
  • use PayPal
Spring Fund Drive: Keep CounterPunch Afloat
CounterPunch is a lifeboat of sanity in today’s turbulent political seas. Please make a tax-deductible donation and help us continue to fight Trump and his enablers on both sides of the aisle. Every dollar counts!
FacebookTwitterGoogle+RedditEmail

Nukes on Mars

World Nuclear News, the information arm of the World Nuclear Association which seeks to boost the use of atomic energy, last week heralded a NASA Mars rover slated to land on Mars on Monday, the first Mars rover fueled with plutonium.

“A new era of space exploration is dawning through the application of nuclear energy for rovers on Mars and the Moon, power generation at future bases on the surfaces of both and soon for rockets that enable interplanetary travel,” began a dispatch from World Nuclear News. It was headed: “Nuclear ‘a stepping stone’ to space exploration.”

In fact, in space as on Earth there are safe, clean alternatives to nuclear power. Indeed, right now a NASA space probe energized by solar energy is on its way to Jupiter, a mission which for years NASA claimed could not be accomplished without nuclear power providing onboard electricity. Solar propulsion of spacecraft has begun. And also, scientists, including those at NASA, have been working on using solar energy and other safe power sources for human colonies on Mars and the Moon.

The World Nuclear Association describes itself as “representing the people and organizations of the global nuclear profession.”  World Nuclear News says it “is supported administratively and with technical advice by the World Nuclear Association and is based within its London Secretariat.”

Its July 27th dispatch notes that the Mars rover that NASA calls Curiosity and intends to land on August 6th, is “powered by a large radioisotope thermal generator instead of solar cells” as previous NASA Mars rovers had been. It is fueled with 10.6 pounds of plutonium.

“Next year,” said World Nuclear News, “China is to launch a rover for the Moon” that also will be “powered by a nuclear battery.” And “most significant of all” in terms of nuclear power in space, continued World Nuclear News, “could be the Russian project for a ‘megawatt-class’ nuclear-powered rocket.” It cites Anatoly Koroteev, chief of Russia’s Keldysh Research Centre, as saying the system being developed could provide “thrust…20 times that of current chemical rockets, enabling heavier craft with greater capabilities to travel further and faster than ever before.” There would be a “launch in 2018.”

The problem—a huge one and not mentioned whatsoever by World Nuclear News—involves accidents with space nuclear power systems releasing radioactivity impacting on people and other life on Earth. That has already happened. With more space nuclear operations, more atomic mishaps would be ahead.

NASA, before last November’s launch of Curiosity, acknowledged that if the rocket lofting it exploded at launch in Florida, plutonium could be released affecting an area as far as 62 miles away—highly-populated and including Orlando. Further, if the rocket didn’t break out of the Earth’s gravitational field, it and the rover would fall back into the atmosphere and break up, potentially releasing plutonium over a massive area. In its Final Environmental Impact Statement for the mission, NASA said in this situation plutonium could impact on “Earth surfaces between approximately 28-degrees north latitude and 28-degrees south latitude.” That includes Central America and much of South America, Asia, Africa and Australia.

The EIS said the costs of decontamination of plutonium in areas would be $267 million for each square mile of farmland, $478 million for each square mile of forests and $1.5 billion for each square mile of “mixed-use urban areas.” The Curiosity mission itself, because of $900 million in cost overruns, now has a price of $2.5 billion.

NASA set the odds very low for a plutonium release for Curiosity. The EIS said “overall” on the mission, the likelihood of plutonium being released was 1-in-220.

Bruce Gagnon, coordinator of the Global Network Against Weapons & Nuclear Power in Space , for more than 20 years the leading opposition group to space nuclear missions, declared that “NASA sadly appears committed to maintaining its dangerous alliance with the nuclear industry. Both entities view space as a new market for the deadly plutonium fuel…Have we not learned anything from Chernobyl and Fukushima? We don’t need to be launching nukes into space. It’s not a gamble we can afford to take.”

Plutonium has long been described as the most lethal radioactive substance. And the plutonium isotope used in the space nuclear program, and on the Curiosity rover, is significantly more radioactive than the type of plutonium used as fuel in nuclear weapons or built up as a waste product in nuclear power plants. It is Plutonium-238 as distinct from Plutonium-239.  Plutonium-238 has a far shorter half-life–87.8 years compared to Plutonium-239 with a half-life of 24,500 years. An isotope’s half-life is the period in which half of its radioactivity is expended.

Dr. Arjun Makhijani, a nuclear physicist and president of the Institute for Energy and Environmental Research, explains that Plutonium-238 “is about 270 times more radioactive than Plutonium-239 per unit of weight.” Thus in radioactivity, the 10.6 pounds of Plutonium-238 being used on Curiosity is the equivalent of 2,862 pounds of Plutonium-239. The atomic bomb dropped on Nagasaki used 15 pounds of Plutonium-239.

The far shorter half-life of Plutonium-238 compared to Plutonium-239 results in it being extremely hot. This heat is translated in a radioisotope thermoelectric generator into electricity.

The pathway of greatest health concern for plutonium is breathing in a particle leading to lung cancer. A millionth of a gram of plutonium can be a fatal dose. The EIS for Curiosity speaks of particles that would be “transported to and remain in the trachea, bronchi, or deep lung regions.” The particles “would continuously irradiate lung tissue.”

There hasn’t been an accident on the Curiosity mission.  But the EIS acknowledged that there have been mishaps previously—in this spaceborne game of nuclear Russian roulette. Of the 26 earlier U.S. space missions that have used plutonium listed in the EIS, three underwent accidents, it admitted. The worst occurred in 1964 and involved, it noted, the SNAP-9A plutonium system aboard a satellite that failed to achieve orbit and dropped to Earth, disintegrating as it fell. The 2.1 pounds of Plutonium-238 fuel onboard dispersed widely over the Earth.  Dr. John Gofman, professor of medical physics at the University of California at Berkeley, long linked this accident to an increase in global lung cancer. With the SNAP-9A accident, NASA switched to solar energy on satellites. Now all satellites and the International Space Station are solar powered.

The worst accident of several involving a Soviet or Russian nuclear space systems was the fall from orbit in 1978 of the Cosmos 954 satellite powered by a nuclear reactor. It also broke up in the atmosphere as it fell, spreading radioactive debris over 77,000 square miles of the Northwest Territories of Canada.

In 1996, the Russian Mars 96 space probe, energized with a half-pound of Plutonium-238 fuel, failed to break out of the Earth’s gravity and came down—as a fireball—over northern Chile. There was fall-out in Chile and neighboring Bolivia.

Initiatives in recent years to power spacecraft safely and cleanly include the launch by NASA last August 8th  of a solar-powered space probe it calls Juno to Jupiter.  NASA’s Juno website  currently reports: “The spacecraft is in excellent health and is operating nominally.” It is flying at 35,200 miles per hour and is to reach Jupiter in 2016. Even at Jupiter, “nearly 500 million miles from the Sun,” notes NASA, its solar panels will be providing electricity.  Waves

Solar power has also begun to be utilized to propel spacecraft through the friction-less vacuum of space. The Japan Aerospace Exploration Agency in 2010 launched what it termed a “space yacht” called Ikaros which got propulsion from the pressure on its large sails from ionizing particles emitted by the Sun. The sails also feature “thin-film solar cells to generate electricity and creating,” said Yuichi Tsuda of the agency, “a hybrid technology of electricity and pressure.”

As to power for colonies on Mars and the Moon, on Mars, not only the sun is considered as a power source but also energy from the Martian winds. And, on the Moon, as The Daily Galaxy  has reported: “NASA is eying the Moon’s south polar region as a possible site for future outposts. The location has many advantages; for one thing, there is evidence of water frozen in deep dark south polar craters. Water can be split into oxygen to breathe and hydrogen to burn as rocket fuel—or  astronauts could simply drink it. NASA’s lunar architects are also looking for what they call ‘peaks of eternal light’—polar mountains where the sun never sets, which might be a perfect settings for a solar power station.”

Still, the pressure by promoters of nuclear energy on NASA and space agencies around the world to use atomic energy in space is intense—as is the drive of nuclear promoters on governments and the public for atomic energy on Earth.

Critically, nuclear power systems for space use must be fabricated on Earth—with all the dangers that involves, and launched from Earth—with all the dangers that involves (1 out of 100 rockets destruct on launch), and are subject to falling back to Earth and raining deadly radioactivity on human beings and other life on this planet.

Karl Grossman, professor of journalism at the State University of New York/College of New York, is the author of the book, The Wrong Stuff: The Space’s Program’s Nuclear Threat to Our Planet. Grossman is an associate of the media watch group Fairness and Accuracy in Reporting (FAIR). He is a contributor to Hopeless: Barack Obama and the Politics of Illusion.

More articles by:

Karl Grossman, professor of journalism at the State University of New York/College of New York, is the author of the book, The Wrong Stuff: The Space’s Program’s Nuclear Threat to Our Planet. Grossman is an associate of the media watch group Fairness and Accuracy in Reporting (FAIR). He is a contributor to Hopeless: Barack Obama and the Politics of Illusion.

May 23, 2018
Nick Pemberton
Maduro’s Win: A Bright Spot in Dark Times
Ben Debney
A Faustian Bargain with the Climate Crisis
Deepak Tripathi
A Bloody Hot Summer in Gaza: Parallels With Sharpeville, Soweto and Jallianwala Bagh
Farhang Jahanpour
Pompeo’s Outrageous Speech on Iran
Josh White
Strange Recollections of Old Labour
CJ Hopkins
The Simulation of Democracy
Lawrence Davidson
In Our Age of State Crimes
Dave Lindorff
The Trump White House is a Chaotic Clown Car Filled with Bozos Who Think They’re Brilliant
Russell Mokhiber
The Corporate Domination of West Virginia
Ty Salandy
The British Royal Wedding, Empire and Colonialism
Laura Flanders
Life or Death to the FCC?
Gary Leupp
Dawn of an Era of Mutual Indignation?
Katalina Khoury
The Notion of Patriarchal White Supremacy Vs. Womanhood
Nicole Rosmarino
The Grassroots Environmental Activist of the Year: Christine Canaly
Caoimhghin Ó Croidheáin
“Michael Inside:” The Prison System in Ireland 
May 22, 2018
Stanley L. Cohen
Broken Dreams and Lost Lives: Israel, Gaza and the Hamas Card
Kathy Kelly
Scourging Yemen
Andrew Levine
November’s “Revolution” Will Not Be Televised
Ted Rall
#MeToo is a Cultural Workaround to a Legal Failure
Gary Leupp
Question for Discussion: Is Russia an Adversary Nation?
Binoy Kampmark
Unsettling the Summits: John Bolton’s Libya Solution
Doug Johnson
As Andrea Horwath Surges, Undecided Voters Threaten to Upend Doug Ford’s Hopes in Canada’s Most Populated Province
Kenneth Surin
Malaysia’s Surprising Election Results
Dana Cook
Canada’s ‘Superwoman’: Margot Kidder
Dean Baker
The Trade Deficit With China: Up Sharply, for Those Who Care
John Feffer
Playing Trump for Peace How the Korean Peninsula Could Become a Bright Spot in a World Gone Mad
Peter Gelderloos
Decades in Prison for Protesting Trump?
Thomas Knapp
Yes, Virginia, There is a Deep State
Andrew Stewart
What the Providence Teachers’ Union Needs for a Win
Jimmy Centeno
Mexico’s First Presidential Debate: All against One
May 21, 2018
Ron Jacobs
Gina Haspell: She’s Certainly Qualified for the Job
Uri Avnery
The Day of Shame
Amitai Ben-Abba
Israel’s New Ideology of Genocide
Patrick Cockburn
Israel is at the Height of Its Power, But the Palestinians are Still There
Frank Stricker
Can We Finally Stop Worrying About Unemployment?
Binoy Kampmark
Royal Wedding Madness
Roy Morrison
Middle East War Clouds Gather
Edward Curtin
Gina Haspel and Pinocchio From Rome
Juana Carrasco Martin
The United States is a Country Addicted to Violence
Dean Baker
Wealth Inequality: It’s Not Clear What It Means
Robert Dodge
At the Brink of Nuclear War, Who Will Lead?
Vern Loomis
If I’m Lying, I’m Dying
Valerie Reynoso
How LBJ initiated the Military Coup in the Dominican Republic
Weekend Edition
May 18, 2018
Friday - Sunday
Andrew Levine
The Donald, Vlad, and Bibi
Robert Fisk
How Long Will We Pretend Palestinians Aren’t People?
FacebookTwitterGoogle+RedditEmail