Click amount to donate direct to CounterPunch
  • $25
  • $50
  • $100
  • $500
  • $other
  • use PayPal
Please Support CounterPunch’s Annual Fund Drive
We don’t run corporate ads. We don’t shake our readers down for money every month or every quarter like some other sites out there. We only ask you once a year, but when we ask we mean it. So, please, help as much as you can. We provide our site for free to all, but the bandwidth we pay to do so doesn’t come cheap. All contributions are tax-deductible.
FacebookTwitterGoogle+RedditEmail

Nukes on Mars

World Nuclear News, the information arm of the World Nuclear Association which seeks to boost the use of atomic energy, last week heralded a NASA Mars rover slated to land on Mars on Monday, the first Mars rover fueled with plutonium.

“A new era of space exploration is dawning through the application of nuclear energy for rovers on Mars and the Moon, power generation at future bases on the surfaces of both and soon for rockets that enable interplanetary travel,” began a dispatch from World Nuclear News. It was headed: “Nuclear ‘a stepping stone’ to space exploration.”

In fact, in space as on Earth there are safe, clean alternatives to nuclear power. Indeed, right now a NASA space probe energized by solar energy is on its way to Jupiter, a mission which for years NASA claimed could not be accomplished without nuclear power providing onboard electricity. Solar propulsion of spacecraft has begun. And also, scientists, including those at NASA, have been working on using solar energy and other safe power sources for human colonies on Mars and the Moon.

The World Nuclear Association describes itself as “representing the people and organizations of the global nuclear profession.”  World Nuclear News says it “is supported administratively and with technical advice by the World Nuclear Association and is based within its London Secretariat.”

Its July 27th dispatch notes that the Mars rover that NASA calls Curiosity and intends to land on August 6th, is “powered by a large radioisotope thermal generator instead of solar cells” as previous NASA Mars rovers had been. It is fueled with 10.6 pounds of plutonium.

“Next year,” said World Nuclear News, “China is to launch a rover for the Moon” that also will be “powered by a nuclear battery.” And “most significant of all” in terms of nuclear power in space, continued World Nuclear News, “could be the Russian project for a ‘megawatt-class’ nuclear-powered rocket.” It cites Anatoly Koroteev, chief of Russia’s Keldysh Research Centre, as saying the system being developed could provide “thrust…20 times that of current chemical rockets, enabling heavier craft with greater capabilities to travel further and faster than ever before.” There would be a “launch in 2018.”

The problem—a huge one and not mentioned whatsoever by World Nuclear News—involves accidents with space nuclear power systems releasing radioactivity impacting on people and other life on Earth. That has already happened. With more space nuclear operations, more atomic mishaps would be ahead.

NASA, before last November’s launch of Curiosity, acknowledged that if the rocket lofting it exploded at launch in Florida, plutonium could be released affecting an area as far as 62 miles away—highly-populated and including Orlando. Further, if the rocket didn’t break out of the Earth’s gravitational field, it and the rover would fall back into the atmosphere and break up, potentially releasing plutonium over a massive area. In its Final Environmental Impact Statement for the mission, NASA said in this situation plutonium could impact on “Earth surfaces between approximately 28-degrees north latitude and 28-degrees south latitude.” That includes Central America and much of South America, Asia, Africa and Australia.

The EIS said the costs of decontamination of plutonium in areas would be $267 million for each square mile of farmland, $478 million for each square mile of forests and $1.5 billion for each square mile of “mixed-use urban areas.” The Curiosity mission itself, because of $900 million in cost overruns, now has a price of $2.5 billion.

NASA set the odds very low for a plutonium release for Curiosity. The EIS said “overall” on the mission, the likelihood of plutonium being released was 1-in-220.

Bruce Gagnon, coordinator of the Global Network Against Weapons & Nuclear Power in Space , for more than 20 years the leading opposition group to space nuclear missions, declared that “NASA sadly appears committed to maintaining its dangerous alliance with the nuclear industry. Both entities view space as a new market for the deadly plutonium fuel…Have we not learned anything from Chernobyl and Fukushima? We don’t need to be launching nukes into space. It’s not a gamble we can afford to take.”

Plutonium has long been described as the most lethal radioactive substance. And the plutonium isotope used in the space nuclear program, and on the Curiosity rover, is significantly more radioactive than the type of plutonium used as fuel in nuclear weapons or built up as a waste product in nuclear power plants. It is Plutonium-238 as distinct from Plutonium-239.  Plutonium-238 has a far shorter half-life–87.8 years compared to Plutonium-239 with a half-life of 24,500 years. An isotope’s half-life is the period in which half of its radioactivity is expended.

Dr. Arjun Makhijani, a nuclear physicist and president of the Institute for Energy and Environmental Research, explains that Plutonium-238 “is about 270 times more radioactive than Plutonium-239 per unit of weight.” Thus in radioactivity, the 10.6 pounds of Plutonium-238 being used on Curiosity is the equivalent of 2,862 pounds of Plutonium-239. The atomic bomb dropped on Nagasaki used 15 pounds of Plutonium-239.

The far shorter half-life of Plutonium-238 compared to Plutonium-239 results in it being extremely hot. This heat is translated in a radioisotope thermoelectric generator into electricity.

The pathway of greatest health concern for plutonium is breathing in a particle leading to lung cancer. A millionth of a gram of plutonium can be a fatal dose. The EIS for Curiosity speaks of particles that would be “transported to and remain in the trachea, bronchi, or deep lung regions.” The particles “would continuously irradiate lung tissue.”

There hasn’t been an accident on the Curiosity mission.  But the EIS acknowledged that there have been mishaps previously—in this spaceborne game of nuclear Russian roulette. Of the 26 earlier U.S. space missions that have used plutonium listed in the EIS, three underwent accidents, it admitted. The worst occurred in 1964 and involved, it noted, the SNAP-9A plutonium system aboard a satellite that failed to achieve orbit and dropped to Earth, disintegrating as it fell. The 2.1 pounds of Plutonium-238 fuel onboard dispersed widely over the Earth.  Dr. John Gofman, professor of medical physics at the University of California at Berkeley, long linked this accident to an increase in global lung cancer. With the SNAP-9A accident, NASA switched to solar energy on satellites. Now all satellites and the International Space Station are solar powered.

The worst accident of several involving a Soviet or Russian nuclear space systems was the fall from orbit in 1978 of the Cosmos 954 satellite powered by a nuclear reactor. It also broke up in the atmosphere as it fell, spreading radioactive debris over 77,000 square miles of the Northwest Territories of Canada.

In 1996, the Russian Mars 96 space probe, energized with a half-pound of Plutonium-238 fuel, failed to break out of the Earth’s gravity and came down—as a fireball—over northern Chile. There was fall-out in Chile and neighboring Bolivia.

Initiatives in recent years to power spacecraft safely and cleanly include the launch by NASA last August 8th  of a solar-powered space probe it calls Juno to Jupiter.  NASA’s Juno website  currently reports: “The spacecraft is in excellent health and is operating nominally.” It is flying at 35,200 miles per hour and is to reach Jupiter in 2016. Even at Jupiter, “nearly 500 million miles from the Sun,” notes NASA, its solar panels will be providing electricity.  Waves

Solar power has also begun to be utilized to propel spacecraft through the friction-less vacuum of space. The Japan Aerospace Exploration Agency in 2010 launched what it termed a “space yacht” called Ikaros which got propulsion from the pressure on its large sails from ionizing particles emitted by the Sun. The sails also feature “thin-film solar cells to generate electricity and creating,” said Yuichi Tsuda of the agency, “a hybrid technology of electricity and pressure.”

As to power for colonies on Mars and the Moon, on Mars, not only the sun is considered as a power source but also energy from the Martian winds. And, on the Moon, as The Daily Galaxy  has reported: “NASA is eying the Moon’s south polar region as a possible site for future outposts. The location has many advantages; for one thing, there is evidence of water frozen in deep dark south polar craters. Water can be split into oxygen to breathe and hydrogen to burn as rocket fuel—or  astronauts could simply drink it. NASA’s lunar architects are also looking for what they call ‘peaks of eternal light’—polar mountains where the sun never sets, which might be a perfect settings for a solar power station.”

Still, the pressure by promoters of nuclear energy on NASA and space agencies around the world to use atomic energy in space is intense—as is the drive of nuclear promoters on governments and the public for atomic energy on Earth.

Critically, nuclear power systems for space use must be fabricated on Earth—with all the dangers that involves, and launched from Earth—with all the dangers that involves (1 out of 100 rockets destruct on launch), and are subject to falling back to Earth and raining deadly radioactivity on human beings and other life on this planet.

Karl Grossman, professor of journalism at the State University of New York/College of New York, is the author of the book, The Wrong Stuff: The Space’s Program’s Nuclear Threat to Our Planet. Grossman is an associate of the media watch group Fairness and Accuracy in Reporting (FAIR). He is a contributor to Hopeless: Barack Obama and the Politics of Illusion.

More articles by:

Karl Grossman, professor of journalism at State University of New York/College at Old Westbury, and is the author of the book, The Wrong Stuff: The Space’s Program’s Nuclear Threat to Our Planet. Grossman is an associate of the media watch group Fairness and Accuracy in Reporting (FAIR). He is a contributor to Hopeless: Barack Obama and the Politics of Illusion.

October 15, 2018
Rob Urie
Climate Crisis is Upon Us
Conn Hallinan
Syria’s Chessboard
Patrick Cockburn
The Saudi Atrocities in Yemen are a Worse Story Than the Disappearance of Jamal Khashoggi
Sheldon Richman
Trump’s Middle East Delusions Persist
Justin T. McPhee
Uberrima Fides? Witness K, East Timor and the Economy of Espionage
Tom Gill
Spain’s Left Turn?
Jeff Cohen
Few Democrats Offer Alternatives to War-Weary Voters
Dean Baker
Corporate Debt Scares
Gary Leupp
The Khashoggi Affair and and the Anti-Iran Axis
Russell Mokhiber
Sarah Chayes Calls on West Virginians to Write In No More Manchins
Clark T. Scott
Acclimated Behaviorisms
Kary Love
Evolution of Religion
Colin Todhunter
From GM Potatoes to Glyphosate: Regulatory Delinquency and Toxic Agriculture
Binoy Kampmark
Evacuating Nauru: Médecins Sans Frontières and Australia’s Refugee Dilemma
Marvin Kitman
The Kitman Plan for Peace in the Middle East: Two Proposals
Weekend Edition
October 12, 2018
Friday - Sunday
Becky Grant
My History with Alexander Cockburn and The Financial Future of CounterPunch
Paul Street
For Popular Sovereignty, Beyond Absurdity
Nick Pemberton
The Colonial Pantsuit: What We Didn’t Want to Know About Africa
Jeffrey St. Clair
The Summer of No Return
Jeff Halper
Choices Made: From Zionist Settler Colonialism to Decolonization
Gary Leupp
The Khashoggi Incident: Trump’s Special Relationship With the Saudi Monarchy
Andrew Levine
Democrats: Boost, Knock, Enthuse
Barbara Kantz
The Deportation Crisis: Report From Long Island
Doug Johnson
Nate Silver and 538’s Measurable 3.5% Democratic Bias and the 2018 House Race
Gwen Carr
This Stops Today: Seeking Justice for My Son Eric Garner
Robert Hunziker
Peak Carbon Emissions By 2020, or Else!
Arshad Khan
Is There Hope on a World Warming at 1.5 Degrees Celsius?
David Rosen
Packing the Supreme Court in the 21stCentury
Brian Cloughley
Trump’s Threats of Death and Destruction
Joel A. Harrison
The Case for a Non-Profit Single-Payer Healthcare System
Ramzy Baroud
That Single Line of Blood: Nassir al-Mosabeh and Mohammed al-Durrah
Zhivko Illeieff
Addiction and Microtargeting: How “Social” Networks Expose us to Manipulation
ADRIAN KUZMINSKI
What is Truth?
Michael Doliner
Were the Constitution and the Bill of Rights a Mistake?
Victor Grossman
Cassandra Calls
Ralph E. Shaffer
Could Kavanaugh’s Confirmation Hearing Ended Differently?
Vanessa Cid
Our Everyday Family Separations
Walaa Al Ghussein
The Risks of Being a Journalist in Gaza
Ron Jacobs
Betrayal and Treachery—The Extremism of Moderates
James Munson
Identity Politics and the Ruling Class
P. Sainath
The Floods of Kerala: the Bank That Went Under…Almost
Ariel Dorfman
How We Roasted Donald Duck, Disney’s Agent of Imperialism
Joe Emersberger
Ecuadorian President Lenin Moreno’s Assault on Human Rights and Judicial Independence
Ed Meek
White Victimhood: Brett Kavanaugh and the New GOP Brand
Andrew McLean, MD
A Call for “Open Space”
FacebookTwitterGoogle+RedditEmail